SYNTHESIS OF 5-O-α-AND-β-D-GLUCOPYRANOSYL-D-GLUCOFURANOSE AND 5-O-α-D-GLUCOPYRANOSYL-D-FRUCTOPYRANOSE (LEUCROSE)

Wolfgang A. R. van Heeswijk, Fred R. Wassenburg, and Johannes F. G. Vliegenthart Laboratory of Organic Chemistry, University of Utrecht (The Netherlands) (Received February 2nd, 1977; accepted for publication June 9th, 1977)

ABSTRACT

Reaction of 1,2-O-cyclopentylidene- α -D-glucofuranurono-6,3-lactone (2) with 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide (1) gave 1,2-O-cyclopentylidene-5-O-(2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl)- α -D-glucofuranurono-6,3-lactone (3, 45%) and 1,2-O-cyclopentylidene-5-O-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)- α -D-glucofuranurono-6,3-lactone (4, 38%). Reduction of 3 and 4 with lithium aluminium hydride, followed by removal of the cyclopentylidene group, afforded 5-O- α -(9) and - β -D-glucopyranosyl-D-glucofuranose (12), respectively. Base-catalysed isomerization of 9 yielded crystalline 5-O- α -D-glucopyranosyl-D-fructopyranose (leucrose, 53%).

INTRODUCTION

The disaccharide leucrose (13) has been isolated from dextran-producing cultures of L. mesenteroides¹ and S. bovis^{2,3}. The latter bacterium also produces 5-O- α -isomaltosyl-D-fructopyranose³. In addition, 5-O- α -D-glucopyranosyl-D-glucofuranose (9), which is closely related structurally to 13, was erroneously believed to be present in manioc flour⁴⁻⁶.

We have prepared⁶ 5-O-(2-acetamido-2-deoxy- α -D-glucopyranosyl)- β -D-glucofuranose (11) via condensation of dimeric 3,4,6-tri-O-acetyl-2-deoxy-2-nitroso- α -D-glucopyranosyl chloride with 1,2-O-isopropylidene- α -D-glucofuranurono-6,3-lactone. However, attempted preparation of 9 by a similar route failed. The cyclopentylidene acetal is a better protecting group for the glucofuranose residue than is the isopropylidene acetal⁷, and we now report the synthesis of 9, 12, and 13 using 1,2-O-cyclopentylidene- α -D-glucofuranurono-6,3-lactone⁷ (2) as the aglycon precursor.

RESULTS AND DISCUSSION

Condensation of 1 with 2⁷ in acetonitrile in the presence of mercuric cyanide and bromide was poorly stereospecific. However, the yield of products was high in comparison with that (10–11%) from 3,6-di-O-acetyl-1,2-O-isopropylidene-α-D-glucofuranose^{8,9}. The coupling products 3 (45%) and 4 (38%) were readily separated

by fractional crystallization from ethanol. Reduction of 3 and 4 with lithium aluminium hydride in 1,2-dimethoxyethane afforded the cyclopentylidene-protected disaccharides, which were isolated and characterized as the hexa-acetates 5 and 6, respectively. Deacetylation of 5 and 6 in methanolic sodium methoxide gave 1,2-O-cyclopentylidene-5-O- α - (7) and - β -D-glucopyranosyl- α -D-glucofuranose (8), respectively. The ¹H-n.m.r. spectra obtained at various stages of the preparation of 7 and 8 were in agreement with the structures assigned. The anomeric configuration of the acetates 3-6 was established on the basis of the chemical shift of H-5'; H-5 in 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosides resonates at higher field than in the α anomers. The interglycosidic, anomeric proton resonances were discernible after deacetylation.

The removal of the cyclopentylidene group from 7 and 8 was effected with 0.52M sulphuric acid⁷, yielding the free sugars 9 and 12 (\sim 96%), respectively. The change in optical rotation accompanying the hydrolyses was consistent with the presence of a (1 \rightarrow 5)-linkage⁷ in both 9 and 12. Compound 12 was characterized as its known toluene-p-sulphonylhydrazone^{9,10}. The g.l.c. data (Table I) for the

CH₂OAc
$$AcO$$

$$A$$

TABLE I

G.L.C. DATA^a FOR THE *O*-TRIMETHYLSILYL DERIVATIVES OF **9**, **12**, AND **13**, AND THE RESPECTIVE ALDITOLS^b (IN PARENTHESES)

	SE-30 (3.8%) Ts	<i>OV-17 (3%)</i> Ts	
12	1.12 1.24 (1.58)	1.15 1.26 (1.61)	
9	1.13 1.22 (1.98)	1.13 1.23 (2.01)	
synthetic 13	1.46 1.67 (1.98)°		
authentic 13	1.46 1.67 (1.98)° 1.46 1.67 (1.98)°	1.47 1.73 (2.01) ^c 1.47 1.73 (2.01) ^c	

^αThe retention times (T_S) are given relative to per-O-Me₃Si-sucrose; error ± 0.03 . ^bPrepared by sodium borohydride reduction of the respective disaccharides. [¢]A shoulder attributable to per-O-Me₃Si-5-O-α-D-glucopyranosyl-D-mannitol was observed on the positive slope of the peak.

trimethylsilylated disaccharide alditols derived from 9 and authentic leucrose were identical. The $J_{1,2}$ values for the furanose moieties in 9 and 12 accorded with those observed⁶ for 10.

The isomerization of 9 in saturated, oxygen-free calcium hydroxide solution was monitored directly by t.l.c., and by g.l.c. of the trimethylsilylated derivatives, polarimetry, and ¹H-n.m.r. spectroscopy [Ca(OD)₂ in deuterium oxide]. The ¹H-n.m.r. spectrum immediately recorded after dissolution of 9 revealed the α-furanoid form exclusively, presumably because of complex formation with calcium ions at O-1 and O-2, which are cis in the α-form. A similar phenomenon has been observed for 5-O-methyl-D-ribofuranose¹¹. In the isomerization reaction, no anomeric protons attributable to mannofuranose were observed, and 9 was almost quantitatively consumed within 3 h, yielding mainly 13. At intermediate reaction times, the ¹H-n.m.r. spectra and g.l.c. traces were those of 9 and 13 superimposed. However, longer reaction times produced other components (t.l.c.) which were not further investigated. No mannose could be detected after methanolysis of crude 13 and subsequent g.l.c. analysis¹².

9 R^{1} , R^{2} = H,OH; R^{3} = OH 10 R^{3} , R^{2} = H,OH; R^{3} = NHAC 11 R^{1} = OH, R^{2} = H, R^{3} = NHAC Thus, the formation of the 1,2-enediol from 9 is extremely rapid in comparison to its back-formation from 13. The anomerisation of 11 (cf. 9) is instantaneous in water⁶, indicating that the furanose hemiacetal is in rapid equilibrium with the corresponding pseudo-acyclic intermediate, which was postulated¹³ to be the immediate precursor for the 1,2-enediol produced in alkaline media. Conversely, the anomerization of fructose has been ascribed largely to pyranose-furanose interconversion rather than to $\alpha \to \beta$ pyranose change¹⁴. The slow mutarotations of leucrose¹ and other 5-substituted fructopyranoses^{14,15} have been cited to support this hypothesis. The apparently negligible back-formation of the 1,2-enediol from 13 substantiates the concept that the main factor controlling the rate of enolization is the concentration of an intermediate pseudo-acyclic form¹³.

Selection of optimal reaction conditions permitted the isolation of a product (53%) which was identical with authentic 13 (see also the data in Table I).

The foregoing procedure offers an attractive route for the preparation of leucrose-type oligosaccharides³, and increases the utility of D-glucofuranurono-6,3-lactone^{6,7,16} for the preparation of $(1 \rightarrow 5)$ -linked disaccharides.

EXPERIMENTAL

Materials. — Leucrose was a gift from Dr. F. H. Stodola (Peoria, Illinois).

General methods. — Melting points were determined on a Mettler FP5/FP51 photoelectric apparatus. Specific rotations were determined at ambient temperature with a Perkin-Elmer 141 Polarimeter. Half-lives of the cyclopentylidene acetals were determined as described earlier⁷. ¹H-N.m.r. spectra (internal Me₄Si or sodium 2,2dimethyl-2-silapentane-5-sulphonate, as appropriate) were recorded with a Varian EM390 (90 MHz) spectrometer, and i.r. spectra with a Pye Unicam SP1100 spectrophotometer. Solutions were concentrated at 40° (bath)/~14 mmHg. T.l.c. was performed on silica gel (Schleicher & Schüll TLC Ready Plastic Foil FR-1500) with conventional detection by charring with sulphuric acid. Column chromatography was performed on silica gel (Merck Kieselgel 60, 230-400 mesh) with A, chloroform; B. chloroform-methanol (25:1): C. propan-2-ol-ethyl acetate-water (2:2:1); and D, acetic acid-ethyl acetate-water-butan-1-ol (6:3:1:8). G.l.c. of trimethylsilvlated derivatives¹⁷ of sugars was carried out on a Pye 104 instrument equipped with flame-ionization detector and glass columns (1.60 m × 4 mm) packed with 3.8% of SE-30 or 3% of OV-17 on Chromosorb W-AW DMCS (80-100 mesh) (oven temperature, 227°; nitrogen flow-rate, 40 ml/min). The retention times (T_S) are given relative to that of trimethylsilylated sucrose.

1,2-O-Cyclopentylidene-5-O-(2.3,4,6-tetra-O-acetyl- α -D-glucopyranosyl)- α -D-glucofuranurono-6,3-lactone (3) and 1,2-O-cyclopentylidene-5-O-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)- α -D-glucofuranurono-6,3-lactone (4). — A mixture of 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide (1; 16.4 g, 40 mmol), mercuric cyanide (5.04 g, 20 mmol), mercuric bromide (7.2 g, 20 mmol), 1,2-O-cyclopentyl-idene- α -D-glucofuranurono-6,3-lactone (2; 10 g, 41.3 mmol), and dry acetonitrile

(100 ml) was kept at room temperature for 1.5 h in the dark, and then concentrated. The residue was extracted with chloroform (4 \times 50 ml), and the combined extracts were shaken with M potassium bromide (3 \times 100 ml), dried (Na₂SO₄), and concentrated to a syrup. Addition of ether afforded a crystalline 1:1 mixture (16 g) of 3 and 4. The remaining mother liquor was subjected to column chromatography (solvent A) and gave an additional crop of 3 + 4 (6 g) (Found: C, 51.08; H, 5.36. $C_{25}H_{32}O_{15}$ calc.: C, 52.45; H, 5.63%).

Fractional crystallization of 3+4 from ethanol (2 g/100 ml), in which the former was more soluble, was monitored by t.l.c. (solvent B) and yielded 3 (10.6 g, 45%; R_F 0.6), m.p. 129–131°, $[\alpha]_D$ +136° (c 2.5, chloroform), $\nu_{\text{max}}^{\text{KBr}}$ 1820 (C=O, lactone) and 1750 cm⁻¹ (C=O, acetyl). ¹H-N.m.r. data (CDCl₃): δ 1.6–1.9 (m, 8 H, cyclopentylidene-CH₂); 2.00, 2.03, 2.06, and 2.09 (4 s, 12 H, 4 AcO); 5.97 (d, $J_{1,2}$ 3.8 Hz, H-1); 4.74 (d, $J_{2,1}$ 3.8 Hz, H-2); 4.53 (d, $J_{5,4}$ 4.4 Hz, H-5); 5.36 (d, $J_{1',2'}$ 3.9 Hz, H-1'); and 4.0–5.7 (m, 8 H, other protons) (Found: C, 52.40; H, 5.59%). Compound 4 (9.0 g, 38%; R_F 0.5) had m.p. 108–110°, $[\alpha]_D$ +6.5° (c 2.5, chloroform), $\nu_{\text{max}}^{\text{KBr}}$ as for 3. ¹H-N.m.r. data (CDCl₃): δ 1.6–1.9 (m, 8 H, cyclopentylidene-CH₂); 2.00, 2.02, 2.06, and 2.08 (4 s, 12 H, 4 AcO); 5.96 (d, $J_{1,2}$ 3.8 Hz, H-1); 4.71 (d, $J_{2,1}$ 3.8, $J_{2,3}$ ~0 Hz, H-2); 4.79 (d, $J_{3,4}$ 3.0 Hz, H-3); 5.59 (d, $J_{5,4}$ 4.4 Hz, H-5); 4.20 (d, 2 H, $J_{6a',5'} = J_{6b',5'} = 3.6$ Hz, H-6a'b'); 3.73 (m, 1 H, H-5' β); and 4.9–5.2 (m, 5 H, other protons) (Found: C, 52.30; H, 5.61%).

3,6-Di-O-acetyl-1,2-O-cyclopentylidene-5-O-(2,3,4,6-tetra-O-acetyl- β -D-gluco-pyranosyl)- α -D-glucofuranose (6). — A solution of 4 (5.1 g, 8.9 mmol) in 1,2-dimethoxyethane (180 ml) was flushed with nitrogen, and lithium aluminium hydride (2.2 g, 58 mmol) was added in portions with stirring. The mixture was then stirred for 3 h at 45-50°, and cooled to 10°, and the excess of hydride was decomposed with ethyl acetate (27 ml). The addition of 50% aqueous methanol (220 ml) gave a precipitate that was collected over diatomaceous earth and thoroughly washed with methanol. The filtrates were combined, the pH was adjusted to 5-6 with hydrochloric acid, and the solution was concentrated. A solution of the residue in water (1 litre) was freeze-dried, and the residue was conventionally acetylated with pyridine (80 ml) and acetic anhydride (40 ml) for 16 h at 5°, and 6 h at room temperature, to yield 6 (3.46 g, 59%), m.p. 111-113° (from ether), $[\alpha]_D - 16^\circ$ (c 3, chloroform), $\nu_{\text{max}}^{\text{KBr}}$ 1750 cm⁻¹ (C=O, acetyl); no lactone absorption was observed (Found: C, 52.86; H, 6.07. C₂₉H₄₀O₁₇ calc.: C, 52.73; H, 6.10%).

3,6-Di-O-acetyl-1,2-O-cyclopentylidene-5-O-(2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl)- α -D-glucofuranose (5). — Compound 3 (4.6 g, 8.0 mmol) was reduced with lithium aluminium hydride and acetylated as described above for 4. The resulting, viscous syrup was eluted from a column (15 \times 5 cm) of silica gel with solvent A to afford 5 (4.6 g, 86%), as a brittle foam, $[\alpha]_D + 50^\circ$ (c 2.5, chloroform), $v_{\text{max}}^{\text{film}}$ as for 6 (Found: C, 52.95; H, 6.15%).

1,2-O-Cyclopentylidene-5-O- α -D-glucopyranosyl- α -D-glucofuranose (7). — A solution of 5 (5 g, 7.6 mmol) in 0.02M methanolic sodium methoxide (200 ml) was monitored by t.l.c. (solvents B and C) until reaction was complete, neutralized with

Amberlite IR-120 (H⁺) resin, and then treated with a mixed-bed (H⁺, HO⁻) resin (100 mg), filtered, and concentrated. A solution of the residue in water (500 ml) was passed through a fine sintered-glass funnel and freeze-dried, affording amorphous 7 (3.0 g, 97%), $[\alpha]_D + 81^\circ$ (c 1.5, water). ¹H-N.m.r. data (D₂O): δ 6.10 (d, $J_{1,2}$ 3.9 Hz, H-1 α), 5.25 (d, $J_{1,2}$ 3.8 Hz, H-1' α), and 4.75 (d, $J_{1,2}$ 3.9 Hz, H-2) (Found: C, 49.77; H, 6.80, C₁₇H₂₈O₁₁ calc. C, 50.00; H, 6.91%).

1,2-O-Cyclopentylidene-5-O-β-D-glucopyranosyl-α-D-glucofuranose (8). — Treatment of 6 (3.4 g, 5.2 mmol) as described above for 5 yielded 8 (2.0 g, 95%), $[\alpha]_D + 3^\circ$ (c 1.5, water). ¹H-N.m.r. data (D₂O): δ 6.01 (d, $J_{1,2}$ 3.8 Hz, H-1α), 4.64 (d, $J_{2,1}$ 3.8 Hz, H-2), and 4.66 (d, $J_{1,2}$ 7.5 Hz, H-1'β) (Found: C, 49.88; H, 6.80%).

5-O- α -D-Glucopyranosyl- (9) and 5-O- β -D-glucopyranosyl-D-glucofuranose (12). — The hydrolyses of 7 and 8 (1.5 g, 3.7 mmol) in 0.52M sulphuric acid (75 ml) were monitored at 20° by t.l.c. (solvent D) and polarimetry 7 [$t_{0.5} \sim 1.7$ h, $\partial \alpha/\partial t < 0$, consistent with a (1 \rightarrow 5)-linkage 7 in 7 and 8; Freudenberg 9 reported $\partial \alpha/\partial t < 0$ for the isopropylidene analogue of 8]. After 9.5–10 h, the reaction was quenched with ice and subsequent neutralization with Dowex 1 X2 (HCO $_3$) resin. Each mixture was filtered and freeze-dried to yield 9 (95%), [α]_D +69.5° (c 2, water), and 12 (94%), [α]_D -25° (c 2, water). Each product was subjected to ion-exchange chromatography 18 on a column (1.5 m × 2 cm) of Dowex 50 X4 (K+) resin to remove any traces of glucose and 7 or 8, and isolated by freeze-drying.

Compound 9 had $[\alpha]_D$ +71° (c 2, water); for g.l.c. data, see Table I. The ¹H-n.m.r. spectrum was similar to that of 10⁶ and indicated a 1:1 $\alpha\beta$ -mixture: δ 5.51 (d, $J_{1,2}$ 4.0 Hz, furanoid H-1 α), 5.14 (d, $J_{1',2'}$ 3.6 Hz, H-1 α), 5.24 (d, $J_{1,2}$ 0.8 Hz, furanoid H-1 β), and 5.18 (d, $J_{1',2'}$ 3.6 Hz, H-1' α). Compound 9 is best characterized by its facile conversion into crystalline 13.

Compound 12 had $[\alpha]_D - 28^\circ$ (c 2, water); lit. 9.10 $[\alpha]_D - 22^\circ$ and -23° (c 1, water) for syrupy 12. For g.l.c. data, see Table I. The ¹H-n.m.r. spectrum (D₂O) was consistent with a 1:1 $\alpha\beta$ -mixture: δ 5.53 (d, $J_{1,2}$ 3.6 Hz, furanoid H-1 α), 4.66 (d, $J_{1',2'}$ 7.5 Hz, H-1' β), 5.22 (d, $J_{1,2}$ < 0.5 Hz, furanoid H-1 β), and 4.70 (d, $J_{1',2'}$ 7.5 Hz, H-1' β). Treatment⁹ of 12 with toluene-p-sulphonylhydrazine gave the hydrazone, m.p. 178–179° (dec.), $[\alpha]_D - 21^\circ$ (c 1, 4:1 pyridine-water); lit. 10 m.p. 180–181° (dec.), $[\alpha]_D - 22^\circ$.

5-O- α -D-Glucopyranosyl-D-fructopyranose (leucrose, 13). — Compound 9 (630 mg, 1.84 mmol) was treated in an atmosphere of nitrogen with oxygen-free 0.044m calcium hydroxide¹⁹ (7 ml) at 35°. The $[\alpha]_{546}$ value rapidly dropped from $+7^{\circ}$ (extrapolated t_0 value) to $\sim 0.5^{\circ}$ in 3 h. At intervals, aliquots (5 μ l) were neutralized with 50% aqueous acetic acid and subjected to t.l.c. [solvent C; 9 (R_F 0.4) \rightarrow 13 (R_F 0.23)] and g.l.c. analysis (trimethylsilyl derivatives, Table I). After 3 h, the ratio of 9 and 13 was $\sim 1:9$. The reaction mixture was quenched with ice and the required amount of Amberlite IR-120 (H⁺) resin, and then filtered and freeze-dried. The product was subjected to ion-exchange chromatography¹⁸ as described above, isolated by freeze-drying, and crystallized from methanol-ethanol to give 13 (331 mg, 53%), m.p. and mixture m.p. 156–157.5°, $[\alpha]_D - 7^{\circ}$ (c 2, water); lit. 1 m.p. 156–157°,

[α]_D -7.6° (c 4, water) (Found: C, 41.70; H, 6.50. C₁₂H₂₂O₁₁ calc.: C, 42.11; H, 6.48%). The ¹H-n.m.r. data (D₂O) [δ 5.13 (d, $J_{1',2'}$ 3.9 Hz, H-1' α) and 3.2-4.2 (13 H, other protons)] for synthetic and authentic 13 were indistinguishable.

Compound 9 (50 mg) was treated with an oxygen-free, saturated solution (0.6 ml) of calcium deuteroxide in deuterium oxide¹⁹. ¹H-N.m.r. spectroscopy [1,4-dioxane (δ 3.56) as internal reference] revealed the α form of 9 exclusively: δ 5.18 (d, 1 H, $J_{1,2}$ 2.3 Hz, H-1 α) and 4.94 (d, 1 H, $J_{1,2}$ 3.6 Hz, H-1' α). Both doublets disappeared during 3 h, and a new doublet at δ 4.89 ($J_{1,2}$ 3.8 Hz, H-1' α in 13) reached maximum intensity. No other signals were observed in the anomeric region of the spectra. The reaction was quenched as described above, and a sample (1 mg) of crude 13 was subjected to methanolysis and g.l.c. analysis as devised by Clamp et al.¹²; no mannose was detected.

ACKNOWLEDGMENTS

We thank Mr. A. V. E. George and Mr. D. Seykens for recording the ¹H-n.m.r. spectra, and Mr. G. J. Gerwig and Mr. J. B. Goedhart for valuable assistance. This investigation was supported by the Netherlands Foundation for Chemical Research (S.O.N.) with financial aid from the Netherlands Organisation for the Advancement of Pure Research (Z.W.O.).

REFERENCES

- 1 F. H. STODOLA, E. S. SHARPE, AND J. KOEPSELL, J. Am. Chem. Soc., 78 (1956) 2514-2518.
- 2 R. W. BAILEY AND E. J. BOURNE, Nature (London), 184 (1959) 904-905.
- 3 E. J. BOURNE, D. H. HUTSON, AND H. WEIGEL, Biochem. J., 79 (1961) 549-553.
- 4 G. MAGHUIN-ROGISTER, Bull. Soc. Chim. Belg., 77 (1968) 575-578.
- 5 J. JADOT AND G. MAGHUIN-ROGISTER, Bull. Soc. Chim. Belg., 77 (1968) 569-574.
- 6 W. A. R. VAN HEESWIJK, P. DE HAAN, AND J. F. G. VLIEGENTHART, Carbohydr. Res., 48 (1976) 187-196.
- 7 W. A. R. VAN HEESWIJK, J. B. GOEDHART, AND J. F. G. VLIEGENTHART, Carbohydr. Res., 58 (1977) 337-344.
- 8 N. K. Kochetkov, A. J. Khorlin, and A. F. Bochkov, Tetrahedron, 23 (1967) 693-707.
- 9 K. Freudenberg and K. Oertzen, Justus Liebigs Ann. Chem., 574 (1951) 37-53.
- 10 J. C. SOWDEN AND A. S. SPRIGGS, J. Am. Chem. Soc., 78 (1956) 2503–2505.
- 11 S. J. ANGYAL AND K. P. DAVIES, Chem. Commun., (1971) 500-501.
- 12 J. P. KAMERLING, G. J. GERWIG, J. F. G. VLIEGENTHART, AND J. R. CLAMP, *Biochem. J.*, 151 (1975) 491–495.
- 13 H. S. ISBELL, H. L. FRUSH, C. W. R. WADE, AND C. E. HUNTER, Carbohydr. Res., 9 (1969) 163-175.
- 14 H. S. ISBELL AND W. W. PIGMAN, J. Res. Natl. Bur. Stand., 20 (1938) 773-776.
- 15 D. J. Bell, J. Chem. Soc., (1953) 1231-1233.
- 16 H. WEIDMANN, M. APPENROTH, R. LEIPERT-KLUG, K. DAX, AND P. STÖCKL, J. Carbohydr. Nucleos. Nucleot., 3 (1976) 235–260.
- 17 J. P. KAMERLING, J. F. G. VLIEGENTHART, J. VINK, AND J. J. DE RIDDER, *Tetrahedron*, 27 (1971) 4275–4288.
- 18 R. M. SAUNDERS, Carbohydr. Res., 7 (1968) 76-79.
- 19 E. M. Montgomery and C. S. Hudson, J. Am. Chem. Soc., 52 (1930) 2101-2105.